# Sugar in the primordial soup The formose reaction and the origin of life



## Content

- Life from the Soup
- Proteins versus RNA
- Prebiotic syntheses of amino acids & nucleobases
- Prebiotic synthesis of sugars
- Sugar in space
- Conclusion



#### What started life?

 $NH_2$ 

HO

What compounds were present in the beginning?

Н

HO

What compounds/reactions are required now?

#### The primordial "soup" $N_2$ CH<sub>3</sub>CN CH<sub>2</sub>O **CH**₄ HCCCN **CH<sub>2</sub>CHCN** CO<sub>2</sub> NH<sub>3</sub> CO NCCN H<sub>2</sub>O **HCN** $SO_2$

Note: no photosynthesis - no O<sub>2</sub>!

#### Natural products



#### Some are more important! $NH_2$ whids **Purines** Н HO 'OH H<sub>2</sub>N Те nes Aminoacids HO<sub>2</sub>C $NH_2$ Alkaloids Carbohydrates **Pyrimidines**

## The essentials of (modern) life

#### Proteins

composed of amino acids catalyse reactions

 $NH_2$ 

#### RNA

HO

composed of nucleobases, ribose and phosphate carry genetic information

# Which was first, RNA or proteins?

 $NH_2$ 

HO

#### **Proteins**

- superior catalysts, simple building blocks, stable

#### RNA

 – can be catalysts, complex building blocks, unstable but can replicate themselves



## Protein

#### aminoacid

#### Prebiotic amino acid syntheses



## RNA



#### Prebiotic nucleobase syntheses



J. Oró, Nature 191 (1961) 1193-1194

## **Common monosaccharides**

aldohexoses ketohexose aldopentoses ribose glucose CHO CHO н— -OH -ОН Н--OH HO--н н fructose -OH Н-Н— —он ĊH<sub>2</sub>OH —он н— CH<sub>2</sub>OH ĊH<sub>2</sub>OH =0HO--Н arabinose -OH mannose H--OH H-CHO CHO CH<sub>2</sub>OH HO-—Н HO--н HO-Н--OH -Н -OH Н— -OH H-H--OH CH<sub>2</sub>OH ĊH<sub>2</sub>OH



 $CH_2O \longrightarrow (CH_2O)_n$ 

A. Butlerow, *Liebigs Ann. Chem.* **53** (1861) 295-298 O. Leow, *J. prakt. Chem.* **33** (1886) 321-351

## Some of the reactions involved

Cannizzaro

de Bruyn-van Ekenstein

Aldol condensation

**Retro-aldol** 

#### **Cannizzaro** reaction



Cannizzaro, Ann. 88 (1853) 129-

#### de Bruyn-van Ekenstein rearrangement



de Bruyn, *Rec. Trav. Chim.* 14 (1895) 150-Evans, *Chem. Rev.* **31** (1942) 537-559

#### de Bruyn-van Ekenstein mechanism





#### Aldol condensation



glyceraldehyde

#### de Bruyn-van Ekenstein



glyceraldehyde

dihydroxyacetone





#### The result:



# Sugars in formose (55% total yield of sugars)



## Open chain forms

|          | aldoses    | ketoses  |
|----------|------------|----------|
| tetroses | 11-16%     | 100%     |
| pentoses | 0.1-0.2%   | 8-22%    |
| hexoses  | 0.002-0.1% | 0.3-0.7% |

#### **Tautomers of D-ribose**

#### Cyclic forms (99,9%)



#### Problems

Much more hexoses than pentoses

Very little ribose

Racemic mixture of sugars

#### dihydroxyacetone



H.O.L. Fischer & E. Baer, Helv. Chim. Acta 19 (1936) 519-532

# Glycolaldehyde phosphate 1



Müller et al., Helv. Chim. Acta 73 (1990) 1410

## Glycolaldehyde phosphate 2



## Extraterrestial compounds



Aminoacids60 ppmCarbohydrates60Pyrimidines0.06Purines1.2



#### Carbohydrates



#### Conclusion

The basic building blocks of proteins and RNA can be prepared from compounds expected to be present on early Earth.

The conditions to make them are incompatible, *i.e.* they can not be formed under the same reaction conditions and in the same place.

The strongest proof that they could have been formed prebiotically is their presence in extraterrestrial matter.