

CONFORMATION STUDIES OF ¹³C ISOTOPE LABELED DISACCHARIDES

Ulrika Olsson* and Roland Stenutz

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

ulrika@organ.su.se

Introduction

The knowledge of the secundary structure of oligo- and polysaccharides is important in understanding how enzymes and other proteins interact with carbohydrates on the cell surface. By conformation analysis it is possible to obtain a picture of the three dimensional structure of a saccharide, which is described by the ring flexibility, the glycosidic (ϕ and ψ) and hydroxy methyl torsions (ω) (Figure 1).

equation. Values of ${}^{3}J_{CC}$ in combination with ${}^{3}J_{CH}$ gives fewer possible torsions and therefore a better estimation of the preferred conformations. To measure ${}^{3}J_{CC}$ values it is necessary to syntezise ${}^{13}C$ labeled saccharides, due to the

low natural occurrence of ¹³C.

Experimental

The syntesis of the ¹³C labeled and the unlabeled β -D-Glc*p*-(1 \rightarrow 3)- α -D-Glc*p*-OMe was performed from [1-¹³C], [2-¹³C] labeled and ordinary D-Glucose respective as the donor starting material, via regioselective coupling to position 3 of the acceptor.² In the last step the protecting groups are removed to obtain the unprotected saccharide which then are used for conformation analysis (Figure 3).

Figure 1. The torsion angles that describes the overall conformation in a saccharide.

In general, the value of ϕ depends on the exo-anomeric effect and ψ on steric effects and the ability to form hydrogen bonds, internal or external. Therefore, as a rough guideline, ϕ values are around -60° for α -D and β -D hexoses and about +60° for α -L and β -D hexoses, whereas ψ are usually between -50° and +50°.

The three staggered rotamers of ω are refered to as gt ($\omega \approx +65^{\circ}$), gg ($\omega \approx -65^{\circ}$) and tg ($\omega \approx 180^{\circ}$) (Figure 2).

Figure 3. The syntetic route for β -D-Glc*p*-(1 \rightarrow 3)- α -D-Glc*p*-OMe.

Figure 2. C5-C6 rotamers.

Nuclear magnetic resonance (NMR) is a powerful and easy method to performe conformation analysis. For example, the size of ${}^{3}J_{CH}$ is dependent on the torsion angles around a defined bond and the relation is described by the Karplus equation.¹ However, the value of the ${}^{3}J_{CH}$ can correspond to more than one torsion angle, because of the periodicity of the

Shortly, labeled and unlabeled β -D-Glc*p*-(1 \rightarrow 2)- α -D-Glc*p*-OMe, β -D-Glc*p*-(1 \rightarrow 4)- α -D-Glc*p*-OMe and β -D-Glc*p*-(1 \rightarrow 6)- α -D-Glc*p*-OMe will also be syntezised and subject to conformation analysis.

References

¹ M. Karplus, *J. Chem. Phys.* **1958**, *30*, 11-15 ² G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, *Tetrahedron Letters* **1990**, *31*, 1331-1334.