

Sequence Determination of Oligo- and Polysaccharides from NMR using a WWW-interface to the Computer Program CASPER

Roland Stenutz,¹ Per-Erik Jansson,² and Göran Widmalm^{*1}

¹Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm, Sweden ²Karolinska Institute, Clinical Research Centre, Huddinge University Hospital, Novum, SE-141 86 Huddinge, Sweden E-mail: gw@organ.su.se

Introduction

NMR spectroscopy has emerged as the most important tool for the structure determination of oligo- and polysaccharides. Whilst component and linkage analysis are still performed by chemical methods the determination of anomeric configuration and sequence is now routinely performed by NMR.

Results

The five structures with the smallest deviation between calculated and experimental spectra are shown together with the complete assignments of all chemical shifts.

Since the NMR spectra of most carbohydrates are unique, it is possible to determine their structure from a single NMR spectrum. The computer program CASPER generates trial structures from information of component and linkage analyses and calculates their NMR spectra. The trial structures are then ranked according to their agreement with the experimental spectrum.

HTML-form with the input for CASPER

	Title	Shigella flexneri 4a O-antigen	
	Source	Carbohydr. Res. 179 (1988) 359-368	
11 glycosyl residues to choose from		Residue Linkage position 1 2 3 4 5 6 L-Rhap Image Image Image Image Image Image Image	Linkage positions are checked for
			consistency

Output from a sequence determination

Best fitting structures

- - ->3)[aDGlc₂(1->6)]bDGlcNAc₂(1->3)aLRha₂(1->2)aLRha₂(1->2)aLRha₂(1->-

Total and *per-resonance* deviations

Assignment of resonances

Experimental	Simulated	Exp-Sim	Assignment
174.88	174.97	-0.09	bDGIcNAc∝ - CO
103.03	102.76	0.27	bDGIcNAc∝ - 1
101.85	102.05	-0.20	aLRha⊨- 1

Structure 1

->3)[aDGlc+(1->6)]bDGlcNAc+(1->2)aLRha+(1->2)aLRha+(1->3)aLRha+(1->

How well CASPER succeeds in picking the correct structure depends mainly on the number of possible structures. Trials with known structures show that most ¹³C-NMR spectra are simulated with a deviation of <0.3 ppm/resonance. In the case of structures with three residues in the repeating unit this is sufficient to determine the correct structure.

The main drawback of CASPER has been the interface and the fact that the program and databases have been in a state of flux. Using an interface based on HTML-forms and server-side scripts allows us to retain creative control over the program whilst making it available to the widest possible audience.

http://www.casper.organ.su.se/casper/