On-line tools for the interpretation of NMR and MS-spectra

Roland Stenutz

Department of Organic Chemistry, Stockholm University SE-106 91 Stockholm, Sweden

roland@organ.su.se

Overview

What is the problem?

How do you ask the right question?

What answer do you get?

The problem

You have a spectrum of a (pure?) compound and want to know its structure...

...because other information about a compound can often be found only once its structure (identity) is known.

The question

What compounds have similar spectra?

Try to narrow down the problem using additional information – source, physical and chemical properties etc.

The answer

You may

...identify the compound

...identify the class of compounds it belongs to (partial structure)

...or just find out that it is unusual and worth investigating

The answer

How well you succeed depends on...

... the amount and quality of the data

...the type of data (MS vs. NMR)

...the additional restraints you may impose on the answers

Polysaccharide structure:

Components

"type" relative configuration absolute configuration ringsize

Hex or HexNAc Glc or Man D- or L--p or -f

Linkages position stereochemistry \rightarrow 4) or \rightarrow 6) α - or β -

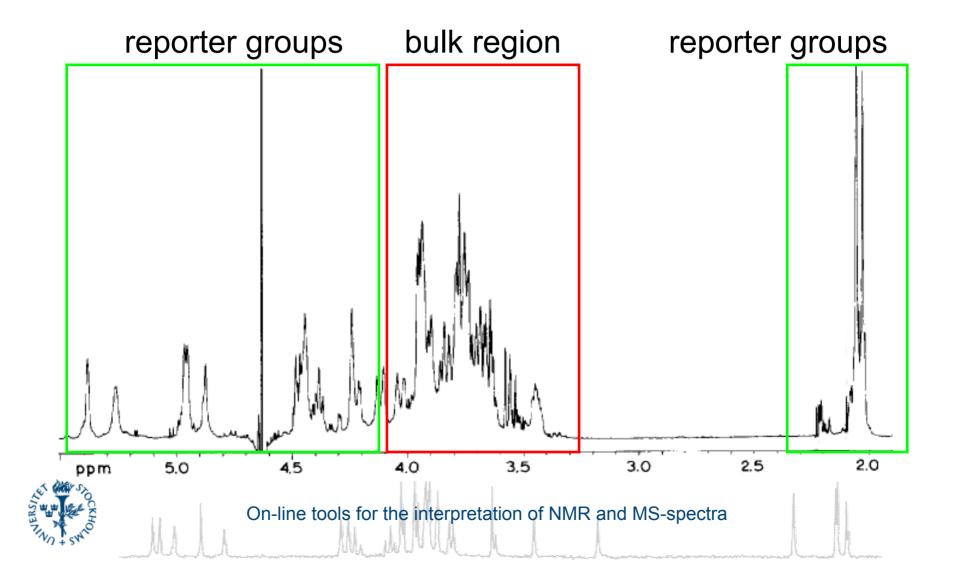
Sequence

 \rightarrow 4)Glc(\rightarrow 4)Gal(\rightarrow or \rightarrow 4)Gal(\rightarrow 4)Glc(\rightarrow

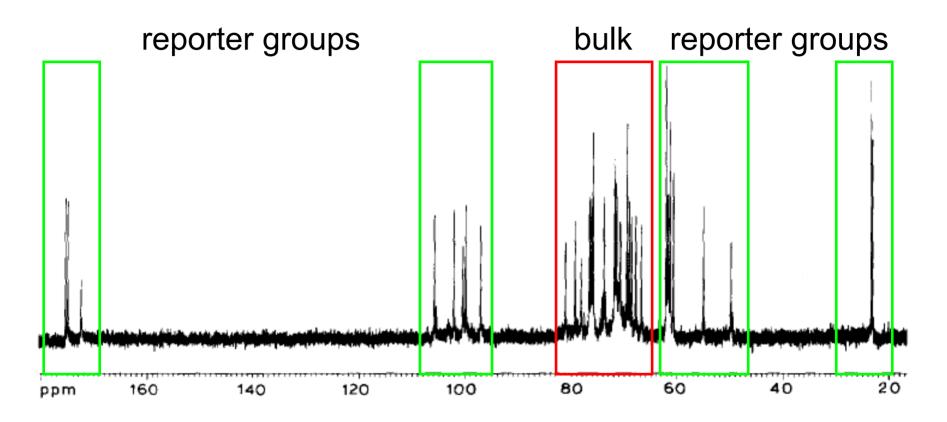
NMR can be used to perform all of the steps in a structure determination

- except the determination of the absolute configuration

MS is insensitive to stereochemistry - e.g. can't distinguish between Glc & Man


Part 1: NMR

Structure of bacterial polysaccharides 13 C-NMR Polymers of repeating units \rightarrow CASPER


Structure of oligosaccharides from GP 1 H-NMR \rightarrow SugaBase

Typical ¹H spectrum (EC O113)

Typical ¹³C spectrum (EC O113)

Every polysaccharide has a unique 1D-NMR-spectrum -

i.e. all of the information about the structure is contained in a 1D-spectrum.

Most of the NMR-experiments are performed to assign the resonances and do not provide additional information about the structure.

Methods for the interpretation of 1D-spectra can save much time and effort!

Current approaches:

comparison with a database (SugaBase) simple and accurate but limited to known structures or sub-structures.

comparison with simulated NMR spectra (CASPER) requires information about the components and linkages to limit the number of possible structures.

Artificial Neural Networks (ANN) current application are limited to a single class of compounds.

SugaBase

(www.boc.chem.uu.nl/sugabase/databases.html)

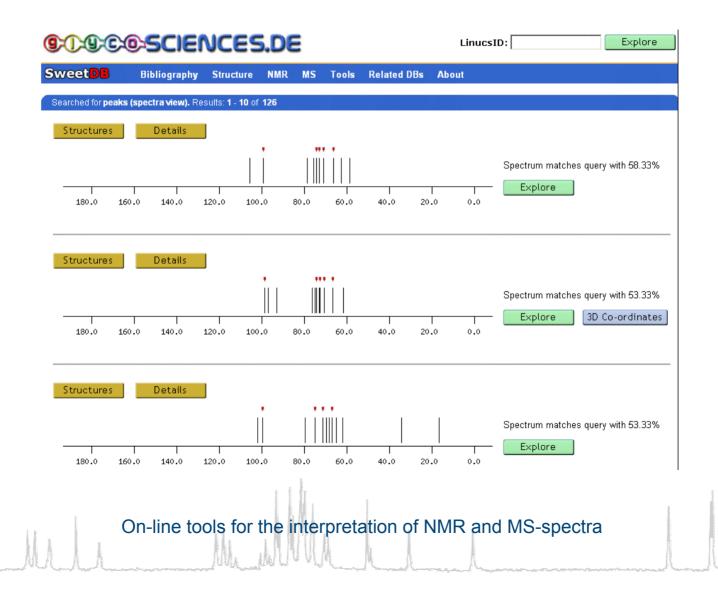
Carbon Chemical Shifts

Tolerance Limit: 0.3 ppm. Match Percentage: 75 %.						
List of Carbon Cher 99.86 70.92 83.65 69.88	mical Shifts:					

Carbon chemical shifts are relative to:

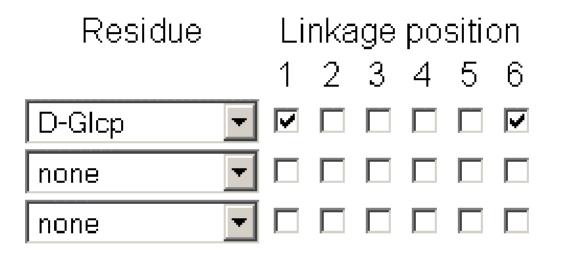
- dioxane = 67.40 ppm.
- Methanol = 49.72 ppm
- Acetone = 31.08 ppm
- TMS = 0.87 ppm (external)
- DSS = -1.84 ppm
- TSP = -1.97 ppm

SugaBase


C#: P-0201-A00404 CC: CCSD:A00404 MHz 75 Temp 333 Solv D20 Original Reference: Acetone Reference Value : 31.45 Correction Applied: -0.37

CCSD-data + NMR

Residue	Linkage	Carbon	PPM	J	Hz	Note
a-D-Glcp		C-1	99.7			
		C-2	70.8			
		C-3	83.5			
		C-4	69.7			
		C-5	72.2			
		C-6	61.3			
b-L-Fucp	3	C-1	104.0			
		C-2	71.8			
		C-3	73.7			
		C-4	72.1			
		C-5	71.8			
		C-6	16.1			



SweetDB – glycosciences.de

(http://www.casper.organ.su.se/casper)

	CASPER						
Home	Research	Analysis	ECDB	CASPER	Ke3690		
Welcome	Help	Simulate	Determine Sequence				
Title Dextran Source J. Am. Chem.	Soc. 96 (1974) 8081-8087						
Residue Li 1	inkage position 2 3 4 5 6		Chemical shifts				
none 🔽 🗆							
none 🔽 🗆							
none 🔽 🗆			Correct by subtracting Number of shifts - Requir	ppm ed: 6 Actual: 6	Clear text area		
Minimum number o sma	f coupling constants of diffe	erent magnitude large	S				
³ J _{HH} 0 ¹ J _{CH} 0	(<2 Hz) 0 (2-7 Hz) (<169 Hz)	0 (>7 Hz) 0 (>169 Hz)	ı.				
Sav	re form 🛛 As MIME 🗹		Starts	simulation			
Or	n-line tools for th	ne interpre	etation of NMR	and MS-spe	ectra		

Data from methylation analysis is used to limit the number of structures generated.

		රිදි			
Home	Research	Analysis	ECDB	CASPER	Ke3690
Welcome	Help	Simulate	Determine Sequence		
		Results o	f calculation		
Please cite as: <i>Computer-assisted</i> R. Stenutz, PE. Jansson and G. URL: http://www.casper.organ.su.s	Widmalm; Carbohydr. Res.306(· •	sion of CASPER to multibranched stru 437	ctures	
1 0 ->6)aDGlc(1	-> , error=0.65ppm (0.	11)			
	 arror=15.91ppm (d. 		ulated struct	ures rank	ed by fit

2. O ->6)bDGlc(1-> , error=15.81ppm (2.64)

Simulated structure

->6)aDGlcⁱ(1->

->6)aDGlc ⁱ (1->	98.90	72.39	74.32	70.66	71.28	66.90	
->6)aDGIC((1->	4.97	3.59	3.74	3.54	3.90	3.98	3.77

Assignment of ¹³C resonances

Experimental	Simulated	Exp-Sim	Assignment
99.00	98.90	0.10	aDGlc ⁱ - 1
74.50	74.32	0.18	aDGlc ⁱ - 3
72.50	72.39	0.11	aDGlc ⁱ - 2
71.30	71.28	0.02	aDGlc ⁱ - 5
70.70	70.66	0.04	aDGlc ⁱ - 4
66.70	66.90	-0.20	aDGlc ⁱ - 6

Error=0.65 ppm (0.11/shift), Systematic error=0.04 ppm, RMS error=0.13 ppm

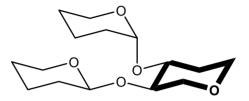
Experimental structure

->6)aDGlc ^l (1	->

->6)aDGlc ⁱ (1->		70.70 n.d.		n.d.

JCAMP-format

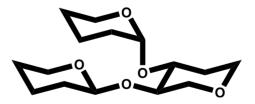
Experimental	Simulated	Exp-Sim	Assignment
99.00	98.90	0.10	aDGlc ⁱ - 1
74.50	74.32	0.18	aDGlc ⁱ - 3
72.50	72.39	0.11	aDGlc ⁱ - 2
71.30	71.28	0.02	aDGlc ⁱ - 5
70.70	70.66	0.04	aDGlc ⁱ - 4
66.70	66.90	-0.20	aDGlc ⁱ - 6



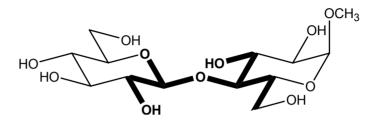
Simulation of NMR

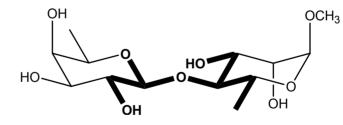
Title	dextran			
Source]
	Residue	Linkage	'Reducing' end	
1) a 💌	D-Glcp 💌	(->6) 🔹	self 💌	
2) a 💌	none 💌	(->2) 💌	residue 1 💌	
3) a 💌	none 🔽	(->2) 💌	residue 1 💌	
4) a 💌	none 💌	(->2) 💌	residue 1 💌	
5) a 💌	none 💌	(->2) 💌	residue 1 💌	
6) a 💌	none 💌	(->2) 💌	residue 1 💌	
7) a 💌	none 💌	(->2) 💌	residue 1 💌	
¹³ C-Cher	mical shifts			¹ H-Chemical shifts
	.5 74.5 71.3 70			
	y subtracting 0	ppm		Correct by subtracting 0 ppm
CLEAF	R Search Sweet	:DB Search	ECDB	CLEAR Search SweetDB Search ECDB
	Save form	As MIME	1	Start simulation
a statistica de la constante de	On-line too	Is for the	e interpretati	on of NMR and MS-spectra

Chemical shift calculation


1) Start with monosaccharide

2) Add glycosylation shifts




3) Add steric corrections

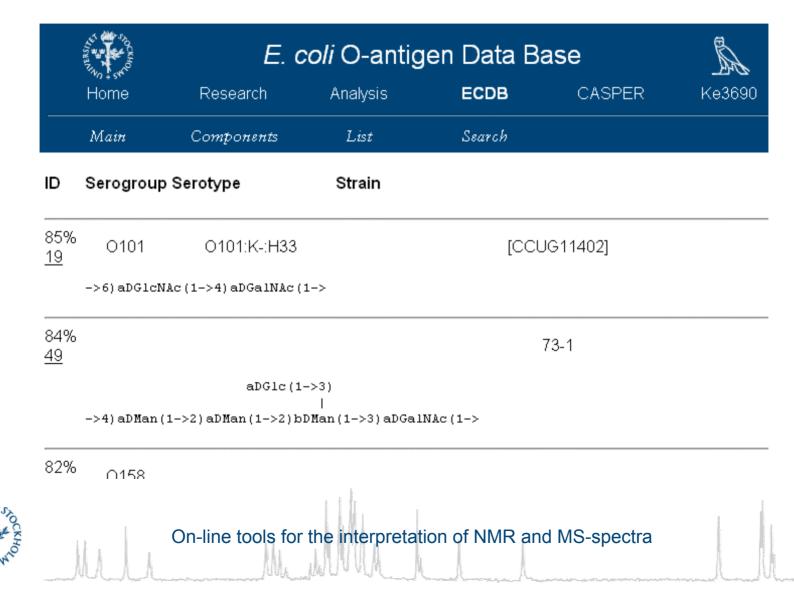
Glycosylation shifts

6.85 - 1.05 - 0.13 - 0.24 0.18 - 0.23

-0.30 - 0.66 - 1.23 10.19 - 1.35 - 0.07

 β DFuc (1 \rightarrow \rightarrow 4) α DRhaOMe

Caveats


It is assumed that the conformation in the PS is the same as in the disaccharide or trisaccharide fragments

In order to have transferable glycosylation shifts it is also assumed that the monosaccharides are rigid.

Extending the set of disaccharide and trisaccharide fragments used in the calculations may reduce these problems - but they are inherent to the approach.

ECDB – E. coli O-antigens

structure

bibliography

	<i>E.</i>	<i>coli</i> O-antig	jen Data Ba	ase	A.
Home	Research	Analysis	ECDB	CASPER	Ke3690
Main	Components	List	Search		
Serogroup Serotype Strain ECDB#		K-:H33 <u>5 11402</u>			
Structure	->6) aI)GlcNAc (1->4) aDG	alNAc(1->		
CarbBank LinucsID Structure code Sugar components Non-sugar compone	ents	IAc, DGalNAc			
Comments 	Structu	ure [1]			
Identical to Cross-reacts with					
¹ H-NMR					
Conditions Reference Comment		it: D2O; Temp.: 40).00ppm	IC		
¹³ C-NMR		175.2 99.2 98.0 58.1 66.2 61.1 5			
Conditions Reference Comment	dioxan	it: D2O; Temp.: 40 ⊨67.4ppm IMR [1] and unpubl			
References	[1] Car	bohydr. Res. 297	(1997) 297-299 [<mark>/</mark>	PubMed 9060191]	

SDBS –small molecules www.aist.go.jp/RIODB/SDBS/menu-e.html

Welcome to **SDBS**

Integrated Spectral Data Base System for Organic Compounds

Japanese

Last updated : March 25, 2004

National Institute of Advanced Industrial Science and Technology

Tsukuba, Ibaraki, Japan

NMR: T.Saito, K.Hayamizu, M.Yanagisawa and O.Yamamoto MS: N.Wasada ESR: K.Someno IR: S.Kinugasa, K.Tanabe and T.Tamura Raman: K.Tanabe and J.Hiraishi

Introduction

How to use

Search Compounds / Search NMR & MS / Display Spectra

Access to this database is free of charge, however we would request users not to download more than 50 spectra and/or compound structure files in one day. All accesses are logged. If, for some specific purpose, more spectra are required the user should consult us, and explain the intended usage for the data. We also request that when the database data is used in a publication or presentation, a proper acknowledgement is given such as: SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/ (access date)

