Conformational analysis of natural products

Hetero- and homonuclear coupling constant calculation

Complete assignment of carbon signals in a stereospecific peptide via selective and single off-resonance proton decoupling experiments. Analysis of the carbon-13 nuclear magnetic resonance spectrum of alumichrome at 67.88 MHz.

De Marco A, LlinĂ¡s M; Biochemistry 18 (1979) 3846-3854
PubMed 486399


Polypeptides and proteins in native conformation exhibit 13C NMR spectra which are highly nondegenerate. Assignment of resonances to carbons in particular residues is hence a prerequisite for a structural analysis of the spectroscopic data. For nonprotonated carbonyl carbons, the assignment can be achieved by selective (1H alpha)13C' 2J decoupling. Using this method, we have assigned the Orn1 and Gly2 carbonyl resonances in alumichrome at 67.9 MHz. We show that a single off-resonance experiment with the decoupling frequency centered in the aliphatic proton spectrum is sufficient to assign unequivocally all the protonated carbon resonances via analysis of the reduced 1J heteronuclear splittings. Alumichrome thus becomes the first complex polypeptide spin system whose 1H, 15N, and now 13C nuclear resonances have been fully identified to date. 13C chemical shifts and 1H--13C spin--spin couplings are discussed in terms of structural strain leading to s


Karplus curve

Coupling constant calculation

Karplus-type equations are frequently used to relate vicinal coupling constants, i. e. 3J, to torsion angles. To calculate a coupling constant for a given dihedral angle (θ) enter a value in the form and press Calculate.
To calculate a torsion angle from a coupling constant enter the coupling constant in the 3J field press Calculate. There may be up to four solutions.
The results are shown below!
Torsion angle (θ): °
Coupling constant (3J): Hz